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Electromagnetic Waves in Toroidal Vessels
of Arbitrary Cross Section Filled with
Radially Inhomogeneous Dielectric Medium

FERDINAND F. CAP

Abstract —In this paper, analytical solutions of Maxwell’s equations in
cylindrical coordinates are presented for toroidal resonators filled with
homogeneous or inhomogeneous unmagnetized plasma or another dielec-
tric medium. It is shown that the electromagnetic boundary conditions valid
on a conducting toroidal surface of arbitrary meridional cross section can
be satisfied by the general solution since the general solution contains an
infinite set of arbitrary constants. A method is given to show how these
constants and the eigenfrequency of the resonator can be calculated for a
given cross section of the toroidal vessel.

I. INTRODUCTION

EATING OF  PLASMAS with electromagnetic

waves is an important method to approach ignition
in thermonuclear fusion devices. When the wavelength of
the electromagnetic wave is small compared to the dimen-
sions of the device, ray-tracing methods of geometrical
optics may be used to describe the propagation of the wave
in the medium. If, however, the wavelength is of the order
of the dimension of the device, wave optical methods
should be used to describe the propagation of the waves
and to calculate the eigenvalues of a toroidal cavity of
arbitrary meridional cross section. Up to now, only ap-
proximate methods to treat this problem have been pub-
lished [1]-[3]. No exact analytical solution is known for a
toroidal device filled homogeneously with plasma and no
publication for inhomogeneous plasmas is known to the
author. In realistic problems, plasmas are anisotropic. For
strong confining magnetic fields, the wave field may be
neglected in the dielectric tensor. In such a case, Maxwell’s
equations are still linear, but a little more complicated.
Before attacking such a problem it might be useful to
explain the new calculation method on a simpler but more
unrealistic example. Anisotropic plasmas will be discussed
in a forthcoming paper.

Usually wave problems subjected to certain boundary
conditions on the confining wall are solved in such a way
that the boundary surface is chosen to be a coordinate
surface in a coordinate system which is Helmholtz separa-
ble, e.g., r = constant for problems with cylindrical wave
guides. In this paper, we choose another method. We write
down the general solution of Maxwell’s equations (contain-
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ing a set of arbitrary constants). Then we investigate on
which surfaces the electromagnetic boundary conditions
are satisfied. We will show how to find the arbitrary
constants (partial amplitudes) in the general solution in
such a manner that these surfaces assume a prescribed
cross section.

II. TuE Basic EQUATIONS FOR A HOMOGENEOUS
MEDIUM

In order to expose our method, and as a basis for the
calculations for an inhomogeneous plasma, we treat first
the homogeneous case. Maxwell’s equations, read [4] in
cylindrical coordinates, are as follows:

_%ff;zrm,-i;ﬁ@ (1)

.1_ a;er¢ ~—iwB,+ 2E, (2)
% — %li—z =—iwB, (3)
— % = e€ypoiwkE, ~ L?-BZ (4)

% % =eeopgiwE, + iTmB, (5)
igr - a—ff = eeyuoiwEy. (6)

A dependence ~ exp(im¢) and a harmonic time depen-
dence ~exp(iwt) has been assumed. € is the dielectric
constant of the medium. For a cold collisionless un-
magnetized plasma, € is constant and given by [5]

cep = ¢o(1— wh /w?) (N

where w is the wave frequency and wp is the plasma
frequency given by

(8)

n is the electron number density and my is the electron
mass. The equation divB =0 is automatically satisfied by
the solution of (1)-(3), and div(ceof ) yields the deviation
from quasineutrality. If the plasma is inhomogeneous, the
plasma density # in (8) becomes a function of space.

wh =ne*/mge,.
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III. THE GENERAL SOLUTION AND THE BOUNDARY
CONDITIONS

The general solution of Maxwell’s equations in cylindri-
cal coordinates is well known [6]. For d/d¢=0 and
€ = constant, it can be written in the form

E,= ), AkZI(\/yz——kzr)coskz
k=0
ky
B,= Y /T,CZZI(\/yz—k%r)coskzz
k2=0

+ LB, Z)(Yy? - K3r)sinksz (10)
ks

-(\/yz —k? r) sin kz
- Zleklzl(\/yl — k} r)cos klz}

l

Bz=—:—__——{ZAk\/Y__—ZO

(11)

aB r
iw 08 iw —
S P 7{— :;Akzkz%

-(\/yz —k2r ) sink,z
+ Zk3§k3Z1(\‘/yl - k3 r)cos k3z>
ks

. (\/72 — k32 r) cosk,z

+ Y B, y? -k} zo(\/y2 - k3 r) sin k3z} (14)
ks

where
Y = €€l @ (15)
and w is the eigenfrequency of the toroidal cavity. k, ky,
k,, and k, are separation constants, depending on the
boundary conditions.
Equations (9)-(14) satisfy (1)-(6) and divB=0, divE =

0. Z, and Z, are appropriate cylinder functions, i.c., a
superposition of Bessel’s function of the first kind J and of
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the second kind Y (Neumann function). The 4,, A4, By,
B, are constants determined by the boundary conditions
and by the given form of the cross section of the toroidal
vessel.

From (9)-(14) we see that for d/d¢ =0 two special
solutions exist. Since propagation takes place in the ¢
direction (and not in the z direction as in the usual
situation with a cylindrical waveguide), the solution
E,, E, B, may be called a transverse electric (TE) wave
and B,, ., E, may be termed a transverse magnetic (TM)
wave. Since the boundary conditions are different for the
TE and TM waves, the eigenvalues w (or y) will, in
general, but not always, be different. If the k£ values are
different, TE and TM waves of the same eigenfrequency w
may satisfy the boundary conditions on an arbitrary cross
section of the conductor.

The electromagnetic boundary conditions demand con-
tinuity of the tangential component E, of the electric and
of the normal component B, of the magnetic field on each
interface. On the surface of a perfect conductor both
components vanish. If the cross section in the meridional
plane ¢ = constant of the interface or the surface is de-
scribed by z(r) in cylindrical coordinates (see Fig. 1), the
tangential and normal components are obtained by projec-
tions of the radial and z components. We consider first the
magnetic field (see Fig. 2)

B, = B,cosa+ B,sina (16)
B,=— B,sina+ B,cosa (17)
where
dz
a—arctg(-‘-i—;). (18)

Now magnetic field lines are lines on which the magnetic
field is purely tangential. Therefore, B, = 0 along magnetic
field lines. The condition B, =0 describes also a perfect
conductor. Thus, special magnetic field lines (i.e., those
along which E, vanishes) describe the conductor z = z(r)
and determine the meridional cross section of the vessel.
Magnetic field lines are described by B,=0 or by the
differential equation

dr dz
5, 9

which follows from (17) and (18). Inserting B, and B, from
(11) and (12), we may integrate to obtain z(r) in the form

(20)

These curves describe the projection of the magnetic field
lines on a meridional plane (and Q = 0 describes the merid-
ional cross-section surface of the conductor z(r) since E,
must vanish on a conductor situated as in Fig. 1).
Equations (19) and (20) describe the TM wave given by
+» B,» B,. The electric boundary condition E, = 0 is satis-
fled since E,=E, =0 and E, =0 on the conductor
Electric fleld lines are described by E, = 0 and a metallic
wall is described by E, = 0. If z = Z(r) is the expression for -
the meridional projection of the electric field lines and

rE, = constant = Q.
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Fig. 1.

Cylindrical coordinates.

Fig. 2. Projections of the field components.

B =727, then
E,=E.cosf+ E,sinf (21)
E,=—E,sinB+ E,cosf (22)
and from E, =0 and (13) and (14) we obtain
rB, = constant = D (23)

for the projection of the electric field lines Z(r). These field
lines describe the TE wave given by B,, E,, E,. E,=0 or
E dZ — E, dr = 0 yields after inserting from (13) and (14)
dB,r dB,r gz
¢ o’ 47 _
ar + az dr 0.
The orthogonal trajectories u(r) to these curves z(r) are

defined by
dz du
i -1 / = (25)

Thus, (24) may be written (9B,r/dr)-(dz/dr)— dB,r/dz
= () and u = z. That means that the condition E, = 0 yields
curves orthogonal to the electric field lines and parallel to
the conductor. The magnetic boundary condition B, =0
on the conductor is satisfied by the TE wave, since then
B = B,=0. In order to find these magnetic fields lines
z(r) along which E, vanishes, we use (19) in the form

dz B,

dr B

r

(24)

(26)

Along z(r), and for vanishing E,, (21) may be written

dz/dr = — E, /E,. Combining this with (26) we obtain
E,B,+E,B,=0 (27)

which is equivalent to E-B=0 or E L B, since E,=0on
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the conducting wall. Equations (20) or (27) allow us to find
the surfaces (meridional curves z(r)) on which E,=0,
B, =0 is valid.

If the TE and TM waves are assumed to have the same
frequency, they must have a different & in order to be able
to satisfy the boundary conditions on a conductor of
arbitrary cross section (see Section IV).

IV. BOUNDARY CONDITIONS ON AN ARBITRARY
CROSS SECTION

In order to obtain a smooth analytical boundary curve in
the frame given by expression (20), a trial and error
method in choosing the value k and the points r,, z, = z(7,)
is necessary. According to our experience, about four points,
r,, z,=z(r,), i =1, - -, 4, represent the minimum to define a
cross section z = z(r) roughly. The more points one takes
into account, the more partial waves have to be taken into
consideration and the more the cross section may be varied.
For i=1,...,N, Q=0, (9) and (20) yield the N homoge-
neous linear equations for the 4,, B,

E,=Y A4, Z,(\y* — k*r,)coskz,
k
+ Y B Z,({y? — kr,)sink;z,=0. (28)
ky

If we take p partial waves into account, i.e., p different
values of k and k,, we have altogether 4p = N unknown
coefficients, since each A4,Z;, By Z, contains two con-
stants. Since linear homogeneous equations can be solved
only if the determinant of the coefficients vanishes, we
calculate the eigenvalue y from the vanishing of the de-
terminant (for given k’s). For B, =0,2p=N, p=2, the
procedure is very simple. From (28) we obtain

agdy(vr,)+ oY (vr)+ [01-71(\/72 - kz",)
+ b1Y1(\/72 —k? r,)] coskz,=0 (29)

where i=1,---,4, a,, f;, a, are other designations for the
constants and b;=1. For k=74 and r,=0.6, z, =0,
r,=13, z,=0, =083, z;=028, r,=1.10, z,=0.20
(all values in meters) we obtained y=8.17629964697,
w/27 =500 MHz for n=1.23x10" pm~?, and the cross
section z(r) of the conductor shown in Fig. 3. The merid-
ional cut of the conductor and the projection of the mag-
netic fieldlines of the TM wave into the meridional plane
may be represented together by

z(r)=larccos Q —r(agJ (yr)+ £Y(yr))
i P (e e R

(30)
where we found a,=0.173255, f,=-0.779360, a,=
0.445031. For the r, z, chosen above, the denominator of
(30) has no zeroes and the expression in the brackets lies in
the interval —1 <[ ]<1. We now consider the TE wave.

Assuming the electric field symmetric in z, (B, = B, = 0),
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Fig. 3. TM wave and cross section of torus for y = 8.1763.

we need p = N/2 particular solutions. Then (10) reads

= pil [ale(vyz - k2 r)+7)sY1(\/72 —k? r)] cosk,z
s=0 -

(31)

and E, and E, may be calculated from (13) and (14).
Inserting for E,, E, as well as for B, and B, —calculated
from (11), (12), and (28)—the boundary condmon (27)
yields N=2 p linear equations for the a,,b,, if r=
z=1z; i=1,---, N and the k <y are given. For example
by dividing the possible interval 0 < k, <y roughly into
equal steps, we may choose p=10 and k,=0; k; =
ky=5; k;=55; ky=6; ks=0.5; kg=12; k;="T14; k8
=17.8; ky=28. This yields the electric field lines (23) to-
gether with magnetic field lines (20) of the TE and T™M
hybrid mode as shown in [11]. '

V. INHOMOGENEOUS MEDIUM

In an inhomogeneous plasma, ¢ and n are no longer
constant. Since (1)—(6) are valid also for an inhomogeneous
plasma, we derive an equation for E, from (1), (2), and (6).
The result is (for m = 0)

9’E, 16_1‘{“2 1 9’E,
ar? r 2

rodr p27%0 g2
For e¢=constant, ffoﬂo v?, and a z dependence
exp (ikz), this equation is solved by (9).
We now assume that the electric permeability € is.a
function depending only on r (“radially inhomogeneous”
plasma) and that

E,=E{Q(r)coskz + E{)(r)sink,z.
We thus have (i =0,1)

A
Ey’+E)~

(33)

1, i !
ﬁE‘;’ +(y2 - k,-z)Eq, + w’e(r)eonoEy = 0.

(34)
Fusion devices have density profiles like [7]
n(r)=n;—no(r~R)’ (35)

where R = 0.95 m and g, = 0.35 m (major and minor torus
radius). Furthermore, we assume 7, =1.225 X 10" particles
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m~2 and ny,=10". From (7), (8), and (33) we then have
Wpgee(r)=v>+(a+br+cr?) k

2
e“pohn
2 2 o’
= QW g — ——
Y olto mg

(36)

Here the parameters a, b, ¢ are defined by

2 RZ
=08 R 3995 (37)
mg
éz”o”o
p=—22"0p 6727 (38)
mg
2 .
=& obo, 3541, (39)
mg

Then (34) becomes (i =

ir/ l i’
Ey+ Ey)-

0,1)
%Ej, +(}'2 +a— k,»z)Eq,

A+ (br+cr?)E,=0. (40)

For b =0, (40) is a Bessel wave equation [8]; for b # 0, we
have a Bocher equation [9]. No table was available for
Bocher functions or for their zeroes. Thus, a numerical
integration was necessary. In order to satisfy (20) in the
four points r, (i=1,---,4) determining the meridional
cross section z(r), we have to solve (40) numerically in
such a way that the TM mode satisfies

EJ(r)coskz + Ey(r)sink,z=0

(41)

for the r;, z,. These four conditions yield the eigenvalue y.
In the numerical integration of (40), a first approximation
for v may be taken from Section IV (homogeneous medium)
and may be improved by a regula falsi procedure (see
later). In the analytical expression (30), the Bessel func-
tions have to be replaced by the Bessel wave functions or
Bocher functions defined by (40). Then (19) yields again
(20) so that the magnetic field lines are given again by
rE, = Q. On the metallic surface, (27) must be satisfied too.
We thus need not only B, and B, but also E, and E,. In
order to find E, and E,, we need By(r, z). We thus. have
to integrate the two equations (i = 2,3)

k’zBu) 1 drB
o T gr\er dr

) +epw’BN=0 (42)

for the TE wave. '

This equation can be derived from (3), (4), and (5).
Using (33), (35), (36), and (37)—(39), as well as i=2,
B =0, B{" = u(r), we obtain

u’+ %u’— —%u+(y2 — kN u+(a+br+et)u
r )
b+2cr

y 2+ a+br+cr?

The projection of the electric field lines onto the merid-
ional plane is given by (23), where B, may be given by

B¢(’>Z)=u1(r)+u2(r)coskz (44)

(1u+u) 0. '(43)
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Fig. 4. Magnetic field for inhomogeneous medium.

(for two solutions k=0 and k # 0 symmetric in z). Since
(43) is a homogeneous differential equation of second
order, its eigenvalue y depends on the boundary conditions
only and not on the initial conditions assumed for the
nuinerical integration. If we designate by u{®,u{® the
solutions for k =0 by u{P, u$? the solutions for & # 0 (for
example k = 7.4) for arbitrary but different initial condi-
tions #{V(0), u;(0); uP(0), uf®(0), etc., then (44) reads

By (r, z) = agu{V(yr)+ fou{®(vr)

+ [6lu§l)(\/y?‘ —k? r)+ Blu§2>(yyz —k? r)] coskz. (45)

Inserting this into the boundary condition (24) we obtain
for the four points 7,z (i=1,---,4) four homogeneous
linear equations for a, f,, a,, b,. For the first guess of v,
the determinant D(y) of the coefficients will not vanish,
since in order to be able to execute the numerical integra-
tion of (43) we had to assume an arbitrary approximate
value for y (y > k), for example the value of the TM wave
given by (41). A regula falsi procedure applied on D(y)—0
will improve the value of y and a renewed numerical
integration of (43) will deliver a better approximation for
v. The process converges rapidly. When applied on (40) for
the TM wave for

r=0605 z,=0065 r,=1295 z,=0037
=083 2;=028 r,=110 z,=020
ko=0 k=74

a=3195 b=-6727 c=351 (46)

and
Eq? = aoyl(l)(yr)+f0y1‘2)(yr)

E;= alyz(l)(\/}Tklz‘r)+b1y2(2)(\/mr) (47)

with the arbitrary initial conditions

yP0)=15 yPO)=1 yPO)=1 H*(0)=1

yP(0)=15 »BPO)=1 yP0)=1 y0)=1
(48)

Fig. 5. Electric field for inhomogeneous medium.

we obtained after the eleventh integration y =
7.8246508621, ap=1, f,=—14543, a,=12624, b,=
—1.9393. The magnetic field lines are shown in Fig. 4. For
the TE wave we may either assume the same y and
calculate one of the k; as eigenvalue or we may assume
all k; and calculate the eigenvalue y. A procedure based
on (43), (44), (45), and (24) yields for the same y=
7.8246508621 for particular solutions (k; =0, k, to be
determined) the result @, =1, f, =—13531, g, =
—0.71067, b, =1.0167, and k, = 7.2580671810. The elec-
tric field lines are shown in Fig. 5.

VI. THE NONAXISYMMETRIC CASE

When m # 0, the situation is a little more complicated,
but it can be handled. Combining (1), (5), (2),and (4)in a
suitable way, we obtain

i orE, arB,
Ez_ﬁ(m 3z “"ar ) (49)
i drE, orB,
Er"ﬁ( T ) (50)
i orB
l 4
B =+ (m Fra rc(r)co,uow—a ) (51)
j drB, OrE
=L id ; i
B, =47 (m 7+ re(r)eopow P ) (52)

where M = €(r)eopow’r? — m2. Equations (49)—(52) satisfy
(1), (2), (4), and (5). We see that we have again two waves:
a TE wave (E, =0, B, # 0, with the components E,, E,,
and B,, B) and a TM wave (B, =0, E,+0 with B,, B,,

and E,, E,). In order to solve (49)-(52) together with (3)
and (6), we make the ansatz

E(r,z)=E.(r)sinkz B.(r,z)=B,(r)coskz
Ey(r,z)=Ey(r)sinkz B,(r,z)=B,(r)coskz
E,(r,z)=E,/(r)coskz

B.(r,z)=B,(r)sinkz. (53)
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Inserting into (49)-(52) and (3) and (6), we obtain

R 1_1 2 12\R 1= m2__ |
M 2+ (e(r)eopow® — k )B¢+;5B¢—7B¢
2B;m _ 2Be(r)eopow’
( (r)eomowr —mz) e(r)eopowir? — m?
2mkE £(r)e€opow’
o oko
5+ Bogoe U7
e(r)eoy,ow2 2 Koo ( )

. (rmkwE¢ — w’B,r - w2r21_9'¢’,) =0 (54)

where e(r) is given by
e(r)= (59)
w’po€o

and v is defined by (36). For the homogeneous medium
(¢’ = 0), we receive an equation obtained earlier [12]. Due
to the inhomogeneity, the analytic method used there can
no longer be applied. Thus, (54) and the corresponding
equation for E¢, have to be solved using a computer. The
method of solution will be the same as described in Section
V of this paper and in [12]. However, the form of the
waveguide wall on which the boundary conditions are to be
satisfied, will be helical again [12].
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