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Electromagnetic Waves in Toroidal Vessels
of Arbitrary Cross Section Filled with

Radially Inhomogeneous Dielectric Medium

FERDINAND F. CAP

Abstract —In this paper, analytical solutions of Maxwell’s equations in

cylindrical coordinates are presented for toroidaf resonators filled with
homogeneous or inhomogeneous unmagnetized plasma or another dielec-

tric medium. It is shown that the electromagnetic boundary conditions valid

on a conducting toroidal surface of arbitrary meridional cross seetion can
be satisfied by the general solution since the general solution contains an
infinite set of arbhrary constants. A method is given to show how these

constants and the eigenfrequency of the resonator can be calculated for a
given cross section of the toroidal vessel.

I. INTRODUCTION

H EATING OF PLASMAS with electromagnetic

waves is an important method to approach ignition

in thermonuclear fusion devices, When the wavelength of

the electromagnetic wave is small compared to the dimen-

sions of the device, ray-tracing methods of geometrical

optics may be used to describe the propagation of the wave

in the medium. If, however, the wavelength is of the order

of the dimension of the device, wave optical methods

should be used to describe the propagation of the waves

and to calculate the eigenvalues of a toroidal cavity of

arbitrary meridional cross section, Up to now, only ap-

proximate methods to treat this problem have been pub-

lished [1]–[3]. No exact analytical solution is known for a

toroidal device filled homogeneously with plasma and no

publication for inhomogeneous plasmas is known to the

author. In realistic problems, plasmas are anisotropic. For

strong confining magnetic fields, the wave field may be

neglected in the dielectric tensor. In such a case, Maxwell’s

equations are still linear, but a little more complicated.

Before attacking such a problem it might be useful to

explain the new calculation method on a simpler but more

unrealistic example. Anisotropic plasmas will be discussed

in a forthcoming paper.

Usually wave problems subjected to certain boundary

conditions on the confining wall are solved in such a way
that the boundary surface is chosen to be a coordinate

surface in a coordinate system which is Hehnholtz separa-

ble, e.g., r = constant for problems with cylindrical wave

guides. In this paper, we choose another method. We write

down the general solution of Maxwell’s equations (contain-
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ing a set of arbitrary constants). Then we investigate on

which surfaces the electromagnetic boundary conditions

are satisfied. We will show how to find the arbitrary

constants (partial amplitudes) in the general solution in

such a manner that these surfaces assume a prescribed

cross section.

II. THE BASIC EQUATIONS FOR A HOMOGENEOUS

MEDIUM

In order to expose our method, and as a basis for the

calculations for an inhomogeneous plasma, we treat first

the ‘homogeneous case. Maxwell’s equations, read [4] in

cylindrical coordinates, are as follows:

(1)

(2)

(3)

(4)

(5)

(6)

A dependence - exp ( im~ ) and a harmonic time depen-

dence - exp ( i~t ) has been assumed. c is the dielectric

constant of the medium. For a cold collisionless un-

magnetized plasma, ~ is constant and given by [5]

cc~ = Co(l – @;/@Z) (7)

where u is the wave frequency and UP is the plasma

frequency given by

u~=ne2/m~c0. (8)

n is the electron numbe~ density and m ~ is the electron

mass. The equation divB = O is aut~matically satisfied by

the solution of (l)–(3), and div(ccOE) yields the deviation

from quasineutrality. If the plasma is inhomogeneous, the

plasma density n in (8) becomes a function of space.
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III. THE GENERAL SOLUTION AND THE BOUNDARY

CONDITIONS

The general solution of Maxwell’s equations in cylindri-

cal coordinates is well known [6]. For 13/6’@= O and

c = constant, it can be written in the form

(F=)sink.

(9)

(lo)

(11)

where

(15)

and a is the eigenfrequency of the toroidal cavity. k, kl,
k2, and k3 are separation constants, depending on the

boundary conditions.

Equations (9)–(14) satisfy (l)-(6) and div~ = O, div~ =

O. 20 and ZI are appropriate cylinder functions, i.e., a

superposition of Besse~s function of the first kind Y and of

the second kind Y (Neumann function). The A–k, Ak, ~~k,

Bk are constants determined by the boundary concMions

and by the given form of the cross section of the toroickd

vessel.

From (9)-(14) we see that for 8/8@= O two special

solutions exist. Since propagation takes place in the @

direction (and not in the z direction as in the usual

situation with a cylindrical waveguide), the solution

E,, Et, B+ may be called a transverse electric (TE) wave

and B,, B,, E+ may be termed a transverse magnetic (TM)

wave. Since the boundary conditions are different for the

TE and TM waves, the eigenvalues ~ (or y) will, in
generul, but not always, be different. If the k values are

different, TE and TM waves of the same eigenfrequency @

may satisfy the boundary conditions on an arbitrary crcms

section of the conductor.

The electromagnetic boundary conditions demand cc~n-

tinuity of the tangential component Et of the electric and

of the normal component B. of the magnetic field on each

interface. On the surface of a perfect conductor both

components vanish. If the moss section in the meridional

plane @= constant of the interface or the surface is cle-

scribed by Z(r) in cylindrical coordinates (see Fig. 1), the

tangential and normal components are obtained by projec-

tions of the radial and z components. We consider first the

magnetic field (see Fig. 2)

Bl=B, cosa+BZsincx (16)

B. = – B,sina+ BZCOSCX (17)

where

dz

()a = arctg % “
(18)

Now magnetic field lines are lines on which the magnetic

field is purely tangential, Therefore, B.= O along magnetic

field lines. The condition B.= O describes also a perfect

conductor. Thus, special magnetic field lines (i.e., those

along which Ef vanishes) describe the conductor z = Z( r)
and determine the meridional cross section of the vessel.

Magnetic field lines are described. by B.= O or by the

differential equation

dr _ dz
~–~

(19)

which follows from (17) and (18). Inserting BZ and B, fr6m

(11) and (12), we may integrate to obtain z(r) in the form

rE@= constant = Q. (2,0)

These curves describe the projection of the magnetic field

lines on a meridional plane (and Q = O describes the merid-

ional cross-section surface of the conductor z(r) since E+
must vanish on a conductor situated as in Fig. 1).

Equations (19) and (20) describe the TM wave given by

E@,B,, B,. The electric boundary condition Et= O is satis-

fied, since E.= E, = O and E@= O on the conductor.

Electric field lines are described by E. = O and a metalllic

wall is described by Et = O. If z = E-(r) is the expression for

the meridional projection of the electric field lines and
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Fig. 1. Cylindrical coordinates.

Fig. 2. Projections of the field components.

~ = Z, then

E,= E,cos~ + E,sin~

En=– E,sin/3+EZcos/3

and from E. = O and (13) and (14) we obtain

rBG = constant = D

(21)

(22)

(23)

for the projection of the electric field lines E(r). These field

lines describe the TE wave given by B@,E,, E,. E,= O or
E,d2 – E, dr = O yields after inserting from (13) and (14)

dB@r + 8B9r d?
—.

dr dz dr
o. (24)

The orthogonal trajectories u(r) to these curves Z(r) are

defined by

(25)

Thus, (24) may be written ( dB@r/dr).(dz/dr)– dB@r/dz
= O and u E z. That means that the condition E,= Oyields

curves orthogonal to the electric field lines and parallel to

the conductor. The magnetic boundary condition l?,, = O

on the conductor is satisfied by the TE wave, since then

B,= B,= O. In order to find these magnetic fields lines

Z(r) along which Ef vanishes, we use (19) in the form

(26)

Along z(r), and for vanishing Et, (21) may be written

dz/dr = – E,/E,. Combining this with (26) we obtain

E,B, + EZBZ= O (27)

which is equivalent to ~. ~ = O or ~ 1 ~, since EO= O on

the conducting wall. Equations (20) or (27) allow us to find

the surfaces (meridional curves z(r)) on which E,= O,
B.= O is valid,

If the TE and TM waves are assumed to have the same
frequency, they must have a different k in order to be able

to satisfy the boundary conditions on a conductor of

arbitrary cross section (see Section IV),

IV. BOUNDARY CONDITIONS ON AN ARBITRARY

CROSSSECTION

In order to obtain a smooth analytical boundary curve in

the frame given by expression (20), a trial and error

method in choosing the value k and the points r,, Zi = z(r, )
is necessary. According to our experience, about four points,

rl, z,=z(r, ), i=l,. ” .,4, represent the minimum to define a

cross section z = Z(r) roughly. The more points one takes

into account, the more partial waves have to be taken into

consideration and the more the cross section may be varied.

For i=l,..., ~, Q = O, (9) and (20) yield the ~ homoge-

neous linear equations for the Ak, Bkl

+ ~Bk,zl(/~rl ) Sin klz, = O. (28)
kl

If we take p partial waves into account, i.e., p different

values of k and kl, we have altogether 4p = N unknown

coefficients, since each A~ 21, B~,Z1 contains two con-

stants. Since linear homogeneous equations can be solved

only if the determinant of the coefficients vanishes, we

calculate the eigenvalue y from the vanishing

terminant (for given k ‘s). For Bkl = O, 2p = N,
procedure is very simple. From (28) we obtain

aoL(yr[)+foyl(vl)+ [alJ1(PrL)

of the de-

p =2, the

+ blY1(~~rl)] cos kzl = O (29)

where i=l,. . . ,4, aO, &, al are other designations for the
constants and bl =1. For k = 7.4 and rl = 0.6, Z1= O,
rz = 1.3, Zz = O, rj = 0.83, Zj = 0.28, rb =1.10, Zd = 0.20
(all values in meters) we obtained y = 8.17629964697,

0/27 = 500 MHz for n = 1.23X 1015 pm-3, and the cross

section Z(r) of the conductor shown in Fig. 3. The merid-

ional cut of the conductor and the projection of the mag-

netic fieldlines of the TM wave into the meridional plane

may be represented together by

1
z(r) =~arccos

[

Q-r(~oJl(yr)+foy~(yr))
r(al.,(pr)+y,(lmrj) 1

(30)

where we found a. = 0.173255, f. = –0.779360, al =
0.445031. For the r,, z, chosen above, the denominator of

(30) has no zeroes and the expression in the brackets lies in

the interval – 1< [ ] <1. We now consider the TE wave.
Assuming the electric field symmetric in z, ( Bk = ~k = O),
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Fig. 3. TM wave and cross section of torus for Y = 8.1763.

1:339

m–3 and nO =1016. From (7), (8), and (33) we then have

u2pOcOt(r) =y2+(a+br+cr2)

yz = &#. _ e2Po% . (36)
m~

Here the parameters a, b, c are defined by

e2n O~2po = ~19 ~
a= (37)

m~

b=–2 *R= -672.7 (38)

e2nopo
~= —n = 354.1. (39)

m~

we need p = N/2 particular solutions. Then (10) reads
Then (34) becomes (i= 0,1)

B+= ‘~1 [ti$J1(/mr)+3,Y1 (/Rr)] cos~sz Ey+ +E:– # $1~Ei+(y*+a–k:)E;
~=o

(31) +(br+cr2)E~ =(). (do)

and E, and EZ may be calculated from (13) and (14).

Inserting for E,, EZ as well as for B, and BZ—calculated

from (11), (12), and (28)—the boundary condition (27)

yields N = 2p linear equations for the d,, ~,, if r = ri,
z=zi, i=l,. . . , N and the k$ < y are given. For example,

by dividing the possible interval O <k, < y roughly into

equal steps, we may choose p =10 and k. = O; kl = 4.5;
k2 = 5; k3 = 5.5; kd =6; kj =6.5; ke = 7.2; k~ = 7.4; kg
= 7.8: Ii. = 8. This vields the electric field lines (23) to-

For b = O, (40) is a Bessel wave equation [8]; for b #O, we
have a B6cher equation [9]. No table was available for

B6cher functions or for their zeroes. Thus, a numerical

integration was necessary, In order to satisfy (20) in the

four points ri (i= 1,”- “, 4) determining the meridional

cross section z(r), we have to solve (40) numerically in

such a way that the TM mode satisfies

E~(r)coskz +E~(r)sinklz=O (41)
–,, .

gether with magnetic field lines (20) of the ~E and TM for the ~i, Zi. These four conditions yield the eigenvalue Y.

hybrid mode as shown in [11]. In the numerical integration of (40), a first approximation

V. INHOMOGENEOUS MEDIUM for y maybe taken from Section IV (homogeneous medium)

and may be improved by a regzda falsi procedure (see
In an inhomogeneous plasma, ~ and n are no longer later). In the ~alytical expression (30), the Bessel func-

constant. Since (l)–(6) are valid also for an inhomogeneous tions have to be replaced by the Bessel wave functions or
plasma, we derive an equation for E@ from (1), (2), and (6). B&her functions defined by (40). Then (19) yields again

The result is (for m = O) (20) so that the magnetic field lines are given again by

8*E4 1 aE4 132E@ rEO = Q. On the metallic surface, (27) must be satisfied too.
—–~E +— + u2ccopOE0 = O. (32) We thus need not only B, and B. but also E, and EZ. In

8r2 + Y ilr ‘r* $ az2
order to find E, and E,, we need BO(r, z). We thus. have

For c = constant, u2ccopo = Y*, and a z dependence to integrate the two equations (i = 2, 3)

exp (ikz ), this equation is solved by (9).

We now assume that the electric permeability c is. a

()

d 1 drB,$ij
—tiBjo+_ _— + eopoti2B$J = O (42)

function depending only on r (“radially inhomogeneous” f dr <r dr

plasma) and that for the TE wave.

E+= E$)(r)coskz + E$)(r)sinklz. (33) This equation can be derived from (3), (4), and (5).

CJsing (33), (35), (36), and (37)-(39), as well as i== 2,
We thus have (i = O,1) B$) = O, B$) = u(r), we obtain

(34)

Fusion devices have density profiles like [7]

b+2cr—
(L )

U+u’ = o. (43)
y2+a+br+cr2 r

n(r) =nl–no(r– R)2 (35) The projection of the electric field lines onto the merid-

ional plane is given by (23), where B+ may be given by
where R = 0.95 m and a. = 0.35 m (major and minor torus

radius). Furthermore, we assume nl =1.225X1015 particles B@(r, z)=ul(r)+ u2(r)coskz (44)
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Fig. 4. Magnetic field for inhomogeneous medium.

(for two solutions k = O and k # O symmetric in z). Since

(43) is a homogeneous differential equation of second
order, its eigenvalue y depends on the boundary conditions

only and not on the initial conditions assumed for the

numerical integration. If we designate by u~l), u~2) the

solutions for k = O by u~l), u\2) the solutions for k # O (for

example k = 7.4) for arbitrary but different initial condi-

tions u[l)(0), U{(l)(0); uj2J(0), uf2)(0), etc., then (44) reads

Bo(r, z) = tioufl)(yr)+fou[z) (yr)

+ [Zlup((mr)+ @&(@=zG)] COSkz . (45)

Inserting this into the boundary condition (24) we obtain

for the four points ri, Zi (i= 1,” “ .,4) four homogeneous

linear equations for tiO, &, al, ~l. For the first guess of y,

the determinant ~(y) of the coefficients will not vanish,

since in order to be able to execute the numerical integra-

tion of (43) we had to assume an arbitrary approximate

value for y (y > k), for example the value of the TM wave

given by (41). A regula falsi procedure applied on ~(y) -+ O
will improve the value of y and a renewed numerical

integration of (43) will deliver a better approximation for

y. The process converges rapidly. When applied on (40) for

the TM wave for

rl = 0.60.5 Z1 = ().()65 r2 = 1.295 Z2= ().()37
rj = 0.83 Z3 = 0,28 rq =1.10 Z4 = 0.20

kO=O kl = 7.4
a = 319.5 b = –672.7 c = 354.1 (46)

and

E;= aOy/1J(yr)+fOy~2) (yr)

with the arbitrary initial conditions

YP(0) = 1.5 Y{(l)(0)= 1 yj2) (o)= 1 y{(2~(o)= 1

YJ1)(0) = 1.5 Y;(l)(0)= 1 yj2) (o)= 1 y;(2)(o) =1

(48)

Fig. 5. Electric field for inhomogeneous medium.

we obtained after the eleventh integration

?.8246508621, a. =1, f,= -1.4543, al =1.2624,
– 1.9393. The magnetic field lines are shown in Fig. 4. For

the TE wave we may either assume the same y and

calculate one of the ki as eigenvalqe or we may assume

all ki and calculate the eigenvalue y. A procedure based

on (43), (44), (45), and (24) yields for the same y =
7.8246508621 for particular solutions (kl = O, k2 to be

deterniined) the result do =1, j. = – 1.3531, dl =

– 0.71067, ~1 = 1.0167, and k2 = 7.2580671810. The elec-

tric field lines are shown in Fig. 5.

VI. TfiE NONAXISYMMETRIC CASE

When m #O, the situation is a little more complicated,

but it can be handled. Combining (l), (5), (2), and (4) in a

suitable way, we obtain

( 8rE@ 6kB@
Ez=~ m~– —

‘r & )
(49)

(50)

where M= c(r)cO~ou2r2 – m2. Equations (49)–(52) satisfy

(1), (2), (4), and (5). We see that we have again two waves:
a TE wave (E@ = O, B+ # O, with the components E., E,,
and B,, B,) and a TM wave (B. = O, E@# O with BZ, B,,
and E,, E,). In order to solve (49)–(52) together with (3)

and (6), we make the ansatz

E,(r, z)=~,(r)sinkz B,(r, z)=~, (r)coskz

EO(r, z)=~@(r)sinkz BO(r, z)= E@(r) coskz

Ez(r, z)=~, (r)coskz BZ(r, z)=~z(r)sinkz. (53)
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Inserting into (49)–(52) and (3) and (6), we obtain

E;+A–, ~Bo+(t(r)tolJo@ z-k2)jj++;j#~@
r

2B<m2 2q$(r)60poCJ2
—

r(c(r)cOpOti2r2 – m2 ) - 6(r)copoo2r2 - rn2

2mkl$c(r)cOpOu2
+ + pO@(r)

e(r)cOpOw2r2 –m*

“( )rmku~+–u2~br–u2r2~~ =0 (54)

where c(r) isgiven by

c(r)= ~(y2+a+br+cr2) (55)
@poco

and y is defined by (36). For the homogeneous medium

(c’ = O), we receive an equation obtained earlier [12]. Due

to the inhomogeneity, the analytic method used there can

no longer be_applied. Thus, (54) and the corresponding

equation for E+ have to be solved using a computer. The

method of solution will be the same as described in Section

V of this paper and in [12]. However, the form of the

waveguide wall on which the boundary conditions are to be

satisfied, will be helical again [12].
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